
TSTE17 System Design, CDIO

Lab 1, Fast prototyping using Altera DSP Builder

v 0.4

2019-09-09

Kent Palmkvist, DA, Dept. EE, Linköpings Universitet

Table of Contents
1 Introduction...2

1.1 Lab goals..2
1.2 Design requirements..2
1.3 Design description...2
1.4 Overview of the design flow..4

2 Detailed descriptions of the design flow tasks..4
2.1 Simulink design entry..5

2.1.1 Adding a subsystem...7
2.2 Simulink simulation...7
2.3 VHDL model creation with support for the built-in logic analyzer...8
2.4 Simulation of the VHDL model using ModelSim...8
2.5 Synthesis of the VHDL into FPGA configuration information...9
2.6 Programming and test of the hardware..9
2.7 Use of the built-in logic analyzer...9
2.8 Additional tasks..10

3 Troubleshooting...10
3.1 The SignalCompiler is unable to detect the jtag cable...10
3.2 I can not open the DSP Builder block/Signal tap block...10
3.3 Modelsim complaines about missing “.salt” file when trying to run.......................................10
3.4 I can not run signal tap (analyze gives error “...Analysis was unsuccessful”).........................10
3.5 The hardware does not have the clock running/The reset seems to be active all the time.......10

1

1 Introduction
This lab manual is assuming that the student has some experience of VHDL synthesis and FPGA
technology. Details about the specific technology used and the CAD tools included in the design
flow is available online through the help function of each tool. Additional information is also
available on the web pages for the CAD tool vendors.

The design entry is based on Simulink models. This tool is a simulation program integrated into
MATLAB. The graphical user interface is straightforward, and this lab manual assumes the student
already have experienced similar interface (e.g., HDL Designer), or is able to quickly learn. More
information about Simulink is available in the help menu of the program. There are also tutorials
and examples available in the help section.

1.1 Lab goals
Learn how to create a design in Simulink using the blocks from Altera DSP Builder, simulate it at
different levels, and test the design in hardware including use of the built-in logic analyzer. The
design example is also illustrating important design principles such as hierarchy and enable signals.

1.2 Design requirements
An up/down counter with reset shall be designed. It should be controlled by the pushbuttons SW4-7
of the FPGA board, and the counter value should be presented on the two 7-segment displays. The
counting shall be synchronized to the 100 MHz system clock of the FPGA board. The decimal point
of the first 7-segment display shall indicate when the next most significant digit will change value
on the next press of the SW4 push button. The decimal point of the second 7-segment display
should be controlled by SW7.

The count value should change once every time the SW4 push-button is pressed. The SW5 switch
shall control the direction of the counter. SW6 shall be used to reset the counter. The counter shall
count in decimal from 00 to 99.

1.3 Design description
The final design is shown in Figure 1 below. It consists of the support blocks for FPGA synthesis
and logic analyzer (SignalCompiler, board configuration, SignalTap II), stimuli generation and
analysis in Simulink (pulse generator, scope), I/O blocks (sw 4-7, display 0-1), and the functionality
to be placed inside the FPGA (counters, flipflops, etc).

The complete design is a synchronous circuit using an implicit clock signal of 100 MHz (defined by
the board configuration block). Flipflops are used to synchronize the pushbutton inputs to this clock
signal.

All clocked elements in the design are clocked by the global 100 MHz clock, including the
counters. The falling edge of the SW4 signal is instead detected and a one clock cycle long pulse is
generated. This pulse is used as an enable signal that makes the counter change value only once
when there is a falling edge on SW4.

Generation of the enable signal for the second counter (MSD) is more complicated. That part of the
system has therefore been placed into a subsystem. There are two situations that generates an active
enable signal, if LSD is going from 0->9 or 9->0. This is detected by checking the current value
combined with the up/down signal and the enable input to the LSD counter. The implementation of
this is shown in .Figure 2.

2

3

Figure 1: Complete system

1.4 Overview of the design flow
The design flow used is divided into the following steps

• Initial setup of the computer and CAD system

• Enter the design

• Run a simulation in Simulink to verify functionality

• Create a VHDL model with support for the built-in logic analyzer

• Run a simulation of the VHDL model using ModelSim

• Synthesize the VHDL into FPGA configuration information

• Program and test the hardware

• Use the built-in logic analyzer to examine internal signals of the FPGA

2 Detailed descriptions of the design flow tasks
The following description tries to give a complete description of the steps taken. More details about
individual steps and functionality of specific blocks and functions can be found in the
documentation for Simulink, ModelSim, and Quartus software. All programs have online help, but
you can also find some extra help regarding the Quartus DSP Builder at
/courses/TSTE17/DSP_Builder_Documentation.

2.1 Simulink design entry

This section shows how to create the design shown in Figure 1. The description shows how to get a
running model, even though the additional comments, formatting and similar is not described. There
are also a lot of shortcuts that can be done (e.g., copy – paste) which is also not covered here.

Start by loading the TSTE17 module using module load courses/TSTE17 followed by TSTE17lab.
There is also a TSTE17proj command that not only starts the tool, but also changes the current
directory to the project directory. For this lab, use only TSTE17lab.

4

Figure 2: Carry detect subsystem

Change the current directory to a directory within your home directory or in a group directory. Use
the current directory field to the right in the matlab toolbar at the top of the window. It is also
possible to use the commands cd, dir, and pwd. More alternatives can be found in the MATLAB
help.

Important: Do not use a directory path that contains spaces anywhere! The design flow will
not work if a directory name contains a space, such as "my documents"!

Start Simulink by pressing the Simulink library button or type simulink in the MATLAB window.

Hint: There is a lot of help available for the Simulink. This can be accessed by selecting Help-
>Product Help. Documentation can be found here for both MATLAB and Simulink, as well as the
different blocksets used in Simulink. There is a separate document covering the Altera DSPBuilder
block set. An additional DSP Builder tutorial can also be found in this chapter. Documentation for
each individual block is available by right-clicking on the block and select help for the block.

Create a new design by File->New->Model.

Save the design using a new name, such as lab1. Important: Change the file type to .mdl, as the
other available format is not supported by DSP Builder. Remember also that this file should be
placed in your home directory (or some subdirectory there) where the path must not contain spaces.

Open the Simulink blockset, and select the sources block collection

Add the Pulse Generator block to the model by dragging it from the block collection and dropping
it on the model. Drag three more pulse generators into the model.

Add the Scope block from the sinks block collection.

Open the "Altera DSP Builder Standard blockset”, and select the AltLab block collection.

Add the SignalCompiler, SignalTap II Logic Analyzer, 3 units of SignalTap II Node, and a clock
block to the new model by dragging the symbols from the library window into the model.

Open the Boards blockset and select the StratixIIEP2S60 block set. Add the Stratix II EP2S60 DSP
Development Board, Seven Segment Display 0 , Seven Segment Display 1, and SW 4 to 7.

Open the Gate and Control block collection and add two Binary to Seven Segments blocks, four
flipflop blocks and three logical bit operator blocks.

Open the IO and Bus block collection and add two bus concatenation blocks and four VCC blocks.

Finally open the Arithmetic block collection and add two counter blocks.

The names of the blocks may be changed to better illustrate their use. This is done by clicking on
the name, and editing/entering the new name. Note that the names should follow VHDL syntax
(start with A-z, contain only A-z, 0-9 and _). Additional free text may also be placed in the
schematic. This is added by double click in some free area in the schematic. This free text is not
used in the VHDL generation, and may thus contain any character.

Some of the blocks have the wrong number of inputs, or needs to be configured correctly. This is
done by double-clicking on the blocks and then modifying the entries in the dialog. These dialog
windows are also useful places to look for more information about some of the blocks.

Open the Stratix II EP2S60 DSP Development Board block. Set the clock pin in to Pin_AM17, the
device to 2S60F1020C4, and the global reset input to PIN_AG19.

The busconcatenation is used to add the control of the dp element to the bus generated by the binary
to 7-segment decoder. The dp is controlled by the most significant bit (MSB) of the bus, and bus A
of the bus concatenation should therefore be set to 1, and bus B to 7. Make also sure that the output
is defined as unsigned by unchecking the "Output is Signed" checkbox.

5

The two counters are counting unsigned integers, and should have 4 bits, counting modulo 10. The
control inputs counter enable and synchronous clear are needed. Set the counter direction to “use
direction port”.

The clock block should specify a Real-world clock period of 10, with a period unit of ns., and with
a simulink sample time of 10e-9. This will make the simulation time equal to the real time behavior
when the design is run on the FPGA board.

The testbench block in the altlab set should be added to the model. The system will then create a
VHDL simulation model that will compare it with the simulation results from the simulink model.

The scope has initially only one input. Multiple inputs can sometimes be useful to simplify the
comparison of signals. The number of inputs to the scope can be changed by opening the scope
(double click on the block), and then select the parameter button (the button next to the printer
button in the window, see Figure 3). Specify the number of axes to 4 in the parameter window, see
Figure 4. The scope have a limited memory depth. The default is 5000 data points, which is too
small in our case. Change this to ten times as many (50000) by selecting the Data history tab and
modify the “limited to the last” entry. Press the OK button, this updates the block in the model to
have 4 inputs and a larger history depth.

6

Figure 3 Scope window

Figure 4 Scope parameter dialog

Next, the interconnections should be added. Wires are added by moving the cursor on top of an
input or output to a block, then press the mouse button and dragging to the other port to connect to.

2.1.1 Adding a subsystem
Subsystems are used to reduce the complexity of the schematic by adding hierarchy to the design.
There is support for a large number of different subsystems in the Simulink environment, but the
DSPBuilder system only accepts the standard subsystem without any enable or trigger input.

Add the subsystem block from the Simulink library, the ports and subsystems set. The subsystem
has initially one input and one output. Double-click on the subsystem to open it.

Additional inputs can now be added by adding in1 and out1 blocks from the Ports and Subsystems
block collection in the Simulink blockset.

The subsystem should contain two decoder blocks detecting when the the least significant digit is
zero and nine. Combined with the up/down control and the enable signals is the enable of the most
significant digit calculated. See Figure 2 form more details.

2.2 Simulink simulation
The pulse generators in the model supplies the stimuli used in simulation. The parameters of the
generators must be set to match the expected use of the design.

It is important to remember that the simulation takes time to perform. In this design is the system
clock 100 MHz, and it is therefore time consuming to run simulation in the range of seconds or
more. The simulation setup is therefore modified to catch the behavior of the system in less than 10
ms.

The setup for the clock pulse generator is shown in Figure 5 below. The clock is running at 2 MHz
(well below 100 MHz, but still short enough to fit a large number of clock cycles within 10 ms).

The up/down pulse generator should have a period of 0.00003, and a pulse width of 80%.

The reset pulse generator should have a period of 0.00006, with a pulse width of 90%.

Finally, the dp pulse generator should have a period of 0.00009, with a pulse width of 50%.

All the settings of the pulse generators above are examples. Experiment yourself with these, and see
what happens.

Set the simulation time to 0.0001 in the simulink toolbar at the top of the model window. The
default value (10.0) is too large, as it will require a couple of hours to complete the simulation. It
will also create gigabytes of testbench data if run for that long time.

Press the start simulation button to run the simulation. Check with the scope what happens (open it
by double clicking on the symbol), and try to evaluate if the design works as expected.

2.3 VHDL model creation with support for the built-in logic analyzer
Open the SignalCompiler block. Make sure that the “Use board block to specify device” is selected.

Select the Signaltap II tab and enable the signaltap.

The design can be analyzed, synthesized and fitted into the FPGA either from the “simple” tab
pressing the compile button, or taken step by step using the “advanced” tab with the individual
buttons for each step.

7

The individual steps are more useful when there is a problem in the model, as it will not try to run
all steps at once.

Many of the steps are complicated and time consuming to compute. Always wait for task to
complete before closing the signal compiler window.

Run all the steps from analysis to fitter. This will take some time, and a lot of information messages
will be given.

2.4 Simulation of the VHDL model using ModelSim

The testbench block allows you to create a VHDL model and compare the simulation results of the
simulink model with the generated VHDL model.

Open the testbench block. The advanced tab allows you to take individual steps in the process, such
as VHDL generation, modelsim simulation, simulink simulation, and comparison. The simple tab
allows all steps to be taken automatically.

Use the simpel tab and press “compare against HDL”. This will first generate the VHDL code
including a testbench. Then is the simulink simulation run while the input and output values are
logged. These values will be used as inputs to the VHDL model and for comparison with the VHDL
model output. The is the VHDL model simulated using Modelsim. Finally is the result of the
modelsim run compared with the simulation results from Simulink, and any differences are
presented.

Note that the simulation may take some time.

8

Figure 5 Clock pulse generator dialog

It is also possible to create new test patterns, and to look at internal structure and nodes in the
design using the advanced tab entries. If you select “launch gui” then the modelsim simulator will
start with your design loaded and executed. This can be very useful if the comparison between the
two models does not match.

2.5 Synthesis of the VHDL into FPGA configuration information
Open the Signal Compiler block and press the Compile button in the Simple tab. Wait for the
compilation steps to complete. A lot of information about resource usage, clock speed etc. can be
found in the transcripts. This step is one of the most time-consuming ones.

The synthesis step creates a directory called lab1_dspbuilder that contains the VHDL files, other
configuration files, and the generated FPGA configuration file (.sof). Messages generated by the
synthesis as well as stastics about resource usage etc can be found in various .rpt and .summary files
in the directory. These files are very useful if you have problems with the synthesis of a design.

2.6 Programming and test of the hardware
In the setup here, the computer used to program the FPGA is a separate machine from the one you
are running Simulink on. The connection to the FPGA board is done through a USB dongle to the
programming machine, and then through the network to the machine running Simulink.

Quartus II is required to run once to make the computer running Simulink aware of the other
hardware-connected computer. The following steps are therefore required:

Start Quartus II programmer using module load prog/quartus/13.0.1 followed by quartus_pgmw.
Press the hardware setup button. In the dialog window select the jtag settings page. Type in the
computer name and password as given by the lab instructor.

Close and quit Quartus II Programmer. The machine now knows about the available hardware
computer server, and this step is not needed to be rerun until the computer is restarted.

Before programming the device, make sure that no one else is using the board. Then press the
button named “Scan jtag” to get the list of connected hardware. Select the proper connection. The
entry to the right of the button should now show “2S60”, which is the name of the FPGA on the
board. Then press the 2nd button called "program" to configure the FPGA on the board. The blue
light in the USB JTAG dongle connected to the board should light up, and the new design will be
downloaded within seconds.

Try out the hardware, pressing the pushbuttons. Do you get problems with multiple bounces when
pressing the pushbutton?

2.7 Use of the built-in logic analyzer
The next step is to try and measure signals inside your design. This is accomplished through the use
of the Signal tap block. Open the Signal tap block. Set the triggering information to trigger on
falling edge of the enable pulse generation by first selecting the signal, then select falling edge in
the list to the right, and finally pressing the change button. The other inputs should be set to don't
care. Tell the system to start its wait for a falling transition on the enable pulse by pressing the
acquire button. Go to the board, and press on the pushbuttons on the board. You should now see that
there now is a new set of waveforms of the counters and the trigger signal presented on the screen.
Note that the trigger only defines when the sampling of data should start, but is not used to define
how often data is sampled. The sample rate is the global system clock (100 MHz), and it is therefore
difficult to catch more than one transition of the SW4.

9

3 Troubleshooting

3.1 The SignalCompiler is unable to detect the jtag cable
The SignalCompiler window is used to define the hardware to program. See section 2.6 on how to
run the Quartus II software and define the available hardware boards.

3.2 I can not open the DSP Builder block/Signal tap block
Sometimes the DSP builder block and the Signal Tap block does not seem to open when double-
clicking in the Simulink schematic. The windows does not show in the taskbar.

The reason may be that the windows are already open, but are hidden behind some other window
even if it is not shown in the taskbar.

The solution is to move the top windows down on the desktop to see if there is any windows behind
them. Once the open DSP Builder or Signal tap window is found the taskbar is usually updated.

3.3 Modelsim complaines about missing “.salt” file when trying to run
When trying to execute the tcl script in modelsim, the simulation stops with error messages similar
to 'Failed to open VHDL file "DSPBuilder_lab1/SW5.salt"'.

The reason is that the .salt files are only generated when running the Simulink model in Simulink,
not when generating the vhdl code.

The solution is to open the Simulink model and run it once.

Please note that the .salt files are not automatically updated when you update the simulink model.
Always remember to run the Simulink model before running the modelsim model.

3.4 I can not run signal tap (analyze gives error “...Analysis was
unsuccessful”)

Sometimes the signal tap application returns an error when trying to do the analysis.

The reason may be that you have a space character in your path to the design. The system does not
accept spaces in the directory path.

Solve this by moving the design into a directory path without any space in it.

3.5 The hardware does not have the clock running/The reset seems to
be active all the time
Sometimes any clocked element such as flipflop, registers, counters, etc. seems to be in a constant
reset state. This occur even if there is no reset input on the device, and/or the reset signal is inactive.

This behavior may be caused by an active global reset. The default setting in the board definition
block is to select “any” pin. The selected pin may then be any I/O pin on the board, and that may
then be a pin that is always active.

The solution is to define the exact pin to use. Select the PIN_AG19 for the global reset. This makes
the reset input connected to the pushbutton labeled “CPU Reset” located next to the FPGA.

3.6 Saving the model generates a lot of Java errors
The Simulink model can be saved in two different formats (.mdl and .slx). The DSP Builder tools
only supports designs in .mdl format. Make sure the file is saved in this format.

10

